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Abstract

Key message Cambial marking experiment and cam-

bial activity analysis offer strong evidence on existence

of annual growth rings in Heritiera fomes and revealing

the potential of dendrochronological applications in

Bangladesh mangroves.

Abstract Despite enormous significance in coastal pro-

tection, biodiversity conservation and livelihood support to

the local communities, mangrove ecosystems have been

continuously degrading mainly due to anthropogenic dis-

turbances and climate change. Time series based on dated

tree ring is an option to identify the causes of forest

dilapidation. In this study, we investigated the structure and

periodicity of the growth ring in Heritiera fomes, the

flagship tree species of the Bangladesh Sundarbans, com-

bining cambial marking experiment and cambial activity

analysis. Distinct growth rings were found which are

delineated by a band of marginal parenchyma, predomi-

nantly one cell wide but up to three and occasionally

interrupted with fiber. Of the 13 trees with cambium

marking experiment, one growth ring was found in each

tree during a year. The dormant cambium was character-

ized by the abrupt boundary between xylem and cambial

zone, absence of enlarging or differentiating cambial

derivatives, lower number of cambial cells and thicker

radial walls in cambial cells. Growth ring anomalies, i.e.,

wedging and partially missing rings were also found. In

most of the cases, the lower part of the eccentric discs had

low radial increment (\0.75 mm) and therefore the growth

ring in that area merged with previous one and produced

wedging or partially missing ring. However, the existence

of annual rings suggests its great potential for future den-

drochronological applications to reveal the dynamics of

vegetation and climate in Sundarbans.

Keywords Annual rings � Cambial marking � Cambial

activity � Dendrochronology � Heritiera fomes �
Mangroves � Bangladesh

Introduction

Sundarbans, the largest single tract mangrove forest in the

world, is situated along the coast of Bay of Bengal (the

estuary of the Ganges–Brahmaputra rivers) spreading over

two neighboring countries (Bangladesh and India). It has

enormous significance in coastal protection against natural

calamities (Saenger and Siddiqi 1993), unique habitat for

wildlife and fisheries (Islam and Wahab 2005; Gopal and

Chauhan 2006; Loucks et al. 2010), supports socioeco-

nomic activities (Walters et al. 2008), and maintains eco-

logical balance (Kathiresan and Bingham 2001).

Considering its uniqueness, the international communities,

such as the Ramsar Convention and UNESCO have

declared Bangladesh Sundarbans (covering 6017 km2,

Chaudhuri and Choudhury 1994) a Ramsar site and part of

the forest (23 %) a world heritage site, respectively (Sid-

diqi 2001). Since 1893, the forest has been managed under
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e.g., 10-year management plans which have been prepared

from the inventory data in which ages of trees were esti-

mated from traditional girth measurements (Siddiqi 2001).

However, depletion of the stock has resulted in over har-

vesting due to over estimation of growth increment from

such kind of growth measurement (Canonizado and Hos-

sain 1998). For example, the number of major tree species

with diameter ([15 cm dbh) has been reduced at a rate of

0.27 % year-1 during the 1926–1997 period (Iftekhar and

Saenger 2008). Moreover, increasing deforestation and

degradation of the forest by anthropogenic disturbances

(Siddiqi 2001; Biswas et al. 2009), diseases (Rahman

1994), and disturbances related to natural calamities (IUCN

2003) and climate change such as sea-level rise (Agrawala

et al. 2003; Loucks et al. 2010) demands for the estab-

lishment of new management plans for sustainable man-

agement of the Sundarbans. Since 1986, 120 permanent

sample plots (PSPs) have been established in the Sundar-

bans (Rahman 1994) to obtain growth and demographic

data e.g., age, growth rate, regeneration and survival.

However, their contribution is very limited due to lack of

systematic monitoring, such as trees are not properly

marked and periodic diameter measurements are not doc-

umented for the respective trees. Tree growth data is cru-

cial for understanding the underlying mechanisms of forest

degradation, in addition to its applicability in designing

sustainable forest management plan. Therefore, tree rings

analysis (retrospective studies) might be an option for tree

age and growth rate estimation.

Time series based on dated growth rings offer the

opportunity for age and growth rate estimation (Worbes

1995, 2002; Rozendaal and Zuidema 2011; Groenendijk

et al. 2014), fixing rotation and annual allowable cut

(Brienen and Zuidema 2006; Schöngart 2008; De Ridder

et al. 2013a), and to explore climate-growth relationships

(D’Arrigo et al. 2011; De Ridder et al. 2013b; Vlam et al.

2014) for paleo-climate reconstruction (Borgaonkar et al.

2010; Song et al. 2014) as well as for the prediction of tree

growth under future climate change (Brienen et al. 2010;

Huang et al. 2013; Wagner et al. 2014). Compared to

higher latitudes, tropical dendrochronology is challenging

due to complexities of growth rings (Schweingruber 1988;

Worbes 2002; Pumijumnong 2013; Gebrekirstos et al.

2014). Mangrove dendrochronology is even more chal-

lenging because of the very dynamic nature of the

ecosystem that frequently inundated by the tides (Verhey-

den et al. 2004; Robert et al. 2011). Therefore, mangrove

species received little attention in dendrochronological

applications due to the assumption on indistinct tree rings

(Van Vliet 1976; Sun and Suzuki 2000) or ambiguous rings

(Amobi 1974; Rao et al. 1987; Srivastava and Suzuki

2001). However, existence of the distinct tree rings in few

mangroves species has been reported from last few decades

(Menezes et al. 2003; Verheyden et al. 2004; Chowdhury

et al. 2008; Estrada et al. 2008; Robert et al. 2011) which

explore their potential for future applications. However, the

existence of distinct ring boundaries does not always

guarantee the annual nature because the ring-width series

do not always cross-correlate or show a clear relationship

with the climate data (Chaudhary et al. 1999; Menezes

et al. 2003). It is thus essential to determine the periodicity

of the growth rings before exploring applications for

dendrochronology.

Cambial marking experiment is an option to determine

the periodicity of tree ring because a mechanical injury

induces callus tissue as an artificial dateable scar in the

wood (Mariaux 1967; Sass et al. 1995; Worbes 1995;

Trouet et al. 2012). This method has been applied suc-

cessfully to several mangrove species (Shiokura 1989;

Verheyden et al. 2004; Robert et al. 2011). Analysis of

cambial activity throughout a given period (Krepkowski

et al. 2011; Volland-Voight et al. 2011; Al-Mefarrej 2014),

combined with phenological observations i.e., leave shad-

ing and flushing (Borchert 1999; Rossi et al. 2012) and

high-resolution meteorological data (Pumijumnong and

Wanyaphet 2006; Trouet et al. 2012) is another approach

for testing growth periodicity. The wood formation is a

cyclic and gradual proliferation process of cambial cells

where cell production and differentiation are linked with

seasonality (Fahn and Werker 1990; Larson 1994; Rossi

et al. 2006; Pumijumnong and Buajan 2013). The timing of

cambial differentiation phases determine specific anatom-

ical characteristics of the xylem (Oribe et al. 2003; Gričar

et al. 2005; Begum et al. 2007; Chen et al. 2010; Dié et al.

2012). The cambial activity of mangrove species has not

often been investigated unlike those of tropical terrestrial

species (Priya and Bhat 1999; Venugopal and Liangku-

wang 2007; Marcati et al. 2008). However, knowledge on

the seasonal cambial dynamics in trees is extremely rele-

vant not only for dendrochronologists but also for forest

managers.

In this study, we aimed to elucidate the growth-ring

structure and periodicity integrating cambial marking

experiment and cambial activity analysis in Heritiera

fomes Buch.- Ham., the flagship species in Sundarbans,

Bangladesh. Moreover, the growth ring formation is dis-

cussed in relation to cambial characters, phenology and

related environmental factors.

Materials and methods

Study site and climate

The current study was conducted in the Sundarbans, which

is situated in the southwestern frontiers of Bangladesh
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(Fig. 1). The forest is regularly inundated by the tidal water

and the amplitudes vary from 3 to 4 m throughout the

forest (Ellison et al. 2000). Moreover, based on tidal

amplitude, the forest can be divided into four zones, such

as inundated by all tides (new accretions), inundated by

normal high tides (covers most of the area), inundated only

by spring high tides (mostly in the northern part), and

inundated by monsoon high tides (northeastern part) (Sid-

diqi 2001). The salinity within the forest increases from the

east to west direction (Islam and Gnauck 2011). The forest

is also influenced by fresh water flows from the Ganges

river through a branch namely Gorai river and within the

forest water flow is distributed by a complex network of

branching and meandering distributaries and rivers varying

from a few meters to few kilometers (Wahid et al. 2007). In

addition to spatial fluctuations, the freshwater discharges

vary seasonally (decreases from December to April) within

the forest and inversely regulate the salinity (Mirza 1998;

Islam and Gnauck 2011). The average growth rate of tree

species is lower in the higher salinity areas (Iftekhar and

Saenger 2008). Species composition also varies along the

salinity gradient (Siddiqi 2001). For example, in the less

saline zone (eastern part), H. fomes forms pure stands in

association with Excoecaria agallocha L., Xylocarpus

mekongensis Pierre, Bruguiera spp., Avicennia officinalis

Linn. etc. The high saline zone (western part) is mainly

dominated by Ceriops decandra (Griff.) Ding Hou in

association with E. agallocha, X. mekongensis, X. grana-

tum J. König.

The study area is characterized by a monsoonal climate

with unimodal distribution of precipitation (Fig. 2). The

monsoon season ranges from June to September with an

average precipitation of 276 mm which is preceded by a

warm and muggy pre-monsoon (March–May) with spo-

radic precipitation (average of 92 mm). The post-monsoon

Fig. 1 Map showing distribution of forests in Bangladesh (a); green
color indicates evergreen and semi-evergreen, red color deciduous,

blue color natural mangroves (Sundarbans) and brown color

plantation mangroves and sampling sites in the Sundarbans (b);
triangle pinning site; circle sampling site for cambium analysis

Fig. 2 Climate diagram of the study area. Vertical bars indicate

precipitation and solid line indicates temperature
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ranges from October to November (average precipitation of

76 mm) and the dry winter continues from December to

February (average precipitation of 11 mm). The average

temperature in pre-monsoon, monsoon, post-monsoon and

winter is 29, 30, 26 and 20 �C, respectively. The average

relative humidity throughout the year ranges from 69 to

83 %.

Site variables

Twenty soil samples were collected from each sampling

site (during March) from a depth of 15 cm in polyethylene

bags for analysis (Fig. 1b). The sand, slit and clay per-

centage was determined using the hydrometer method (Day

1965). The electrical conductivity (EC) was determined in

a solution of 1:5 soil–water mixtures using a conductivity

meter (Extech 341350A-P Oyster) and EC was converted

to salinity (ECe; Shahid 2013). Variability among the

sampling sites was analyzed separately for both experi-

ments, such as cambial marking experiment (site 1, 2 and

3) and cambial activity analysis (site 4, 5 and 6) using

ANOVA followed by a post hoc (Tukey HSD) test. Inun-

dation classes were designated as I, II, III and IV where

inundated by 100–76, 75–51, 50–26, 25–5 % of the high

tides, respectively (Tomlinson 1994).

Cambial marking experiment and sample collection

Heritiera fomes is a flagship species in Bangladesh Sun-

darbans and widely distributed in the selected sampling

sites. Fifteen trees in three study sites (five in each location,

Fig. 1b) were selected for the cambial marking experiment

and tagged for identification in the next year. Thereafter,

cambium of the selected trees was marked on 6–8th Jan-

uary 2013, using a hypodermic needle (18G; 1.2 mm

diameter) at 130 cm above the ground level. A total of 13

(5, 5 and 3 samples for site 1, 2 and 3, respectively) stem

discs (Tw66289–66301) was collected after destructive

sampling from the cambial marked trees on 30th March

and 1st April 2014. In addition, fifteen stem discs were

collected from another three sites (five in each site,

Tw66320–66334) at the same height level for cambial

activity analysis in March and April 2014 (Fig. 1b). These

samples were immediately preserved in containers with 1:1

alcohol and glycerin.

Sanding and wound observations

Exact cambial marking positions were identified by a len-

ticel-like structure which is visible on the outer bark

(Verheyden et al. 2004). The stem discs of the cambial

marked trees were cut at few millimeters above the actual

place of wounding and sanded (100–1200 grit) until

reaching the wounding position. The wound tissue was

carefully investigated to locate the position of the cambial

initials at the time of pinning and the number of growth

layers formed since marking the cambium was determined.

For growth ring structure and wound observation, the

images of stem discs (2.59 magnification) and wounding

areas (49) were taken using an opto-digital microscope

(Olympus DSX–100, Tokyo, Japan).

Wood anatomical analysis

For anatomical characterization, images were taken (109)

before and after (restored wood) the wounding position of

the stem disc using the same opto-digital microscope.

Vessel density (number of vessels per mm2) as well as

average radial and tangential vessel diameters (mm) was

measured using ImageJ software (Schindelin et al. 2012).

Average vessel diameter was calculated from averaging

radial and tangential diameters. Vessel grouping was

measured by counting the number of vessel groups in the

same measuring field (Schmitz et al. 2006). Number of rays

per mm2 was also calculated for both positions (before and

after the wounding) on the disc.

Growth measurements after cambial wounding

Growth rings were observed after cambial wounding on the

disc. However, the rings were discontinuous or partially

missing in some samples. The stem discs from the cambial

marking experiments also showed pith eccentricity which

is expressed as the ratio of upper (tension wood) and lower

part (opposite wood) of the disc (Sultana et al. 2010). Ring

distinctness was categorized as I, II, III and IV where ring

distinct by 100, 75, 50, 25 % of the concentric circle,

respectively (Table 1). Radial increment after the cambial

wounding was measured along the four intersected lines on

the disc (Fig. 3). In case of distinct ring boundary, growth

was measured in the respective line, rather used zero for

locally absent ring. Finally, average growth rate was made

from the four measurements for each tree.

Microtome sectioning and light microscopy

For anatomical characterization of the cambial marked

samples, thin sections (transversal and radial) were pre-

pared (near the area of cambial wounding) with a thickness

of 20 lm using a sliding microtome (Microm, Fisher Sci-

entific, Walldorf, Germany). The sections were stained

with a 0.1 % safranin (Merck KGaA, Darmstadt, Germany)

solution in 50 % ethanol and washed in an ethanol series

(50, 75, 96 and 100 %, 5 min in each concentration). For

the cambial activity analysis, each disc was cut into small

blocks containing xylem, cambium and bark. These blocks
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were embedded for 72 h with PEG1500 (polyethylene

glycol) at 60 �C. Transversal and radial sections with a

thickness of 20 lm and containing secondary xylem,

cambial zone, phloem and bark were also cut using a

sliding microtome. The sections were stained with a mix-

ture of 0.1 % safranin and alcian blue solution. They were

washed in an ethanol series (50, 75, 96 and 100 %) and

mounted on microscope slides with Euparal (Carl Roth

Gmbh ? Co. KG., Karlsruhe, Germany). Observations

were made with a microscope (Olympus BX60F-3, Tokyo,

Japan), equipped with bright–field and polarized light

optics, as well as epi-fluorescence using a mercury arc

lamp and an Olympus WU filter cube (excitation

330–385 nm, long-pass emission 420 nm). By bright-field

microscopy, red color shows lignified walls and blue color

cellulosic walls. With the fluorescence microscopy, yel-

lowish color indicates the lignified cell walls and violet or

blue color shows cellulosic walls (Dié et al. 2012).

Results

Site variation

The salinity varied significantly among the sites

(F2,17 = 3.65, P\ 0.05) of cambial marking experiment.

However, salinity variation between site 1 and 2 was not

significant but varied significantly from site 3 (Table 1).

Similarly, salinity of the soil samples from cambial activity

analysis sites (site 4, 5 and 6) revealed significant

(F2,17 = 3.74, P\ 0.05) variation among the sites

(Table 2). The inundation category did not show clear

pattern in salinity variation but sites with higher inundation

category (category I) showed lower salinity.

Observations of wound reaction and anatomical

variation

The cambial mark appeared as moderate reaction in wood

due to wounding (Figs. 3, 4a). The inserted needle pro-

duced puncture canal (up to 3 mm in length) in the xylem

which is characterized by a combination of wood

anatomical features, such as crushed cells, amorphous zone

and oxidized xylem (see Smith 1988) (Fig. 4a). The dark

layer was formed by the residues of crushed cells which are

usually referred to as the ‘stripes of cell wall residues’

(Kuroda 1986; Nobuchi et al. 1995; Verheyden et al. 2004).

The amorphous substances accumulated between the cru-

shed cells and the oxidized wood (Fig. 4a). The oxidized

wood produced around the puncture canal up to 1.5 mm

distance after the amorphous zone. Above the layer of

crushed cells, a large area of callus-like parenchymatous

tissue was formed which indicating the actual wound

response of the tree (Fig. 4a). Afterwards the wood

Table 1 Site characteristics along with tree diameter, ring visibility, eccentricity and radial growth after cambial marking

Sample

number

Site Salinity ± SD

(ECe; dS m-1)

Inundation

category*

Dbh (cm) Distinctness

category�
Eccentricity Radial growth

(mm)

Tw66289 1 24 ± 2a II 3.8 III 3.34 0.87

Tw66290 1 4.2 III 3.95 0.70

Tw66291 1 3.2 II 1.7 0.55

Tw66292 1 3.5 I 2.24 1.57

Tw66293 1 3.2 III 2.00 0.60

Average ± SD 3.6 ± 0.4 0.86 ± 0.41

Tw66294 2 20 ± 2b II 4.3 I 1.72 1.93

Tw66295 2 4.9 III 3.2 0.50

Tw66296 2 4.8 I 2.9 1.82

Tw66297 2 5.5 III 1.80 0.54

Tw66298 2 5.8 I 1.67 1.95

Average ± SD 5.1 ± 0.6 1.35 ± 0.76

Tw66299 3 18 ± 4b I 5.7 III 1.88 0.82

Tw66300 3 4.5 I 1.35 1.62

Tw66301 3 5.0 II 3.25 1.30

Average ± SD 5.0 ± 0.6 1.25 ± 0.40

Total average ± SD 4.5 ± 0.5 1.14 ± 0.53

Same letter indicates not significant and different letters indicate significant variation

SD standard deviation, Dbh diameter at breast height

* Inundation category according to Tomlinson (1994)
� Ring distinctness was categorized as I, II and III where ring is distinct by 100, 75, 50 % of the concentric circle, respectively
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production was restored. The newly formed wood pro-

duced a twofold higher vessel density and significantly

(t test, P\ 0.01) smaller size vessels after wounding

(Figs. 4a, b; Table 1). Number of the vessel groups and ray

density was higher in the post-wounding zone (Table 3).

Moreover, most of the vessels in the oxidized wood were

filled with gummy substances (Fig. 4b).

Growth ring characters and periodicity

Of the 13 samples collected from the cambial marking

experiment, one growth ring was found after cambial

marking in each tree (Figs. 3, 4). The ring is marked by a

band of marginal parenchyma; predominantly one-cell

wide but up to three-cell parenchyma and occasionally

interrupted with fiber was also observed (Fig. 4). The ring

boundaries, however, were not always concentric along the

circumference of the discs (Fig. 3). In the studied samples,

only 38 % showed category I, 16 % category II and 46 %

category III ring on the discs (Table 1). Samples with

category I ring showed low pith eccentricity compared to

other categories. During 1-year experiment, trees formed a

distinct ring when radial increments were more than

0.75 mm in the stem circumference. The average radial

Fig. 3 Sanded stem discs with cambial wounding. a Tw66289; b Tw66290; c Tw66292; d Tw66294; e Tw66296; f Tw66298; g Tw66299;

h Tw66300; i Tw66301. Scale bar 10 mm
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growth after the last formed ring was 1.14 ± 0.63 mm.

Trees from the higher salinity site (site 3) showed lower

growth rate (0.86 ± 0.41 mm) compared to lower saline

sites (Table 1).

Characteristics of the cambial zone

In this study, the term cambial zone applies to the entire

region of secondary vascular tissue generation and includes

intermediate cambial derivatives between the xylem and

phloem (Rossi et al. 2006; Dié et al. 2012). The demar-

cation boundary between xylem and cambial zone was

abrupt (Fig. 5). The cambial zone was characterized by 4–7

cambial cells with thin tangential and thicker radial walls.

Moreover, there was no enlarging or differentiating cam-

bial derivative. There was no site-specific variation in

cambial zone characteristics (Table 2). These criteria

firmly indicated that cambial was dormant in the studied

samples.

Discussion

Wound-induced anatomical response

Shortly after wounding, the first stage of compartmental-

ization occurs to confine the wound injury within bound-

aries in the smallest possible area in the wood through

anatomical and chemical changes (Shigo 1984, Smith and

Lewis 2005), such as crushed cells, a zone with amorphous

wood tissue and oxidized wood (Fig. 4a, b). The crushed

cells originate from crushed cambial cells and cambial

derivatives on both sides of the cambium (Kuroda 1986;

Nobuchi et al. 1995; Verheyden et al. 2004). The

Table 2 Site, cambial and non conductive phloem characteristics

Site Salinity ± SD (ECe; dS m-1) Inundation class* Dbh (cm) ± SD Cambial cells

Demarcation boundary No. of cells Enlarging/cell division

4 28 ± 4a III 4.4 ± 0.5 Abrupt 4–6 –

5 24 ± 2b II 5.1 ± 0.5 Abrupt 4–6 –

6 13 ± 5c I 4.4 ± 0.6 Abrupt 4–7 –

Different letters indicate significant variation

SD, standard deviation; –, absent; Dbh, diameter at breast height

* Inundation category according to Tomlinson (1994)

Fig. 4 a Microphotograph of

the cambial wounding

(Tw66289). 1 puncture canal; 2

crushed cambial derivatives; 3

amorphous layer; 4 oxidized

wood; 5 parenchyma tissue; 6

restored xylem. b Anatomical

characteristics of oxidized (Ow),

normal (Nw) and restored (Rw)

wood near the wounding. White

arrow indicates gum deposited

vessel and black arrow indicates

the growth ring. Scale bars

2 mm (a), 500 lm (b)
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functional sapwood vessels around the wound were

blocked with gummy substances (Fig. 4b) and the par-

enchyma cells might shift their metabolism from normal

energy-yielding metabolism to the production of poisoning

phenolic and terpene substances which are oxidized in the

presence of available oxygen (Smith 1988). The oxidized

products might be more toxic or inhibitory to the

microorganisms (Pearce 1996). The cambium produced

new (restored) sapwood in the second stage of compart-

mentalization (Figs. 4a, b) which is capable of energy

storage and water movement (Smith 1988). The existence

of higher amount of parenchyma above the wound

(Fig. 4a) corresponds to a considerable effort for defense

against pathogens and wound healing (Schmitt and Liese

1990). It is probable that the higher amount of spongy

parenchyma cells decrease the mechanical strength which

might be counter balanced by an increasing number of rays

(e.g., Arbellay et al. 2012). Moreover, higher number of

rays might have adaptive role in compartmentalization of

decay (Shigo 1984). The wounding induced the formation

of higher number of narrower vessels and mostly in groups

(Fig. 4b). On the other hand, occurrence of few narrow

vessels and higher number of rays after wounding has been

reported in Rhizophora mucronata Lam. from Kenyan

Table 3 Anatomical characteristics of pre- and post-cambial wounding

Sample no. Vessel dia (lm) ± SD Vessel density (no. mm-2) No. of group vessels Ray density (no. mm-2)

Pre Post Pre Post Pre Post Pre Post

Tw66289 104 ± 24 70 ± 15 8 19 2 5 4 6

Tw66290 88 ± 25 73 ± 23 9 14 2 4 5 8

Tw66291 95 ± 18 81 ± 17 10 17 1 3 5 6

Tw66292 99 ± 22 85 ± 20 9 14 1 3 4 7

Tw66293 102 ± 15 80 ± 21 11 17 1 3 7 9

Tw66294 100 ± 20 82 ± 16 8 12 2 3 4 6

Tw66295 105 ± 23 87 ± 20 9 24 2 4 7 9

Tw66296 89 ± 23 75 ± 13 13 20 1 3 5 8

Tw66297 98 ± 15 80 ± 20 10 14 2 3 4 5

Tw66298 110 ± 28 94 ± 18 9 11 1 4 5 6

Tw66299 99 ± 20 71 ± 23 8 13 2 4 5 7

Tw66300 112 ± 24 90 ± 12 8 12 1 4 6 9

Tw66301 107 ± 23 74 ± 15 9 17 1 3 4 6

Average 100 ± 21 80 ± 18 9 16 1 4 5 7

SD standard deviation

B 

Xy 

Cz 

Ph 

A 

Xy 

Cz 

Ph 

Fig. 5 Morphology of the dormant cambium. a Light micrograph of transverse section (Tw66330); b transverse section under fluorescence light

(Tw66320). Xy xylem, Cz cambial zone, Ph phloem. Scale bars 50 lm
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mangroves (Verheyden et al. 2004). Formation of higher

number of narrow vessels and vessel groups in the restored

wood might be therefore a trade-off between hydraulic

safety and efficiency (Schmitz et al. 2006; Robert et al.

2009; Arbellay et al. 2014). However, the persistence of

wound induced anatomical response and the nature of

wound closure might vary according to species, tree vigor,

and nature of wounding (Neely 1988; Delvaux et al. 2010).

Annual nature of growth rings

The studied samples displayed distinct annual growth rings

delimited by a band of marginal parenchyma (Figs. 3, 4).

Conversely, Mariam et al. (2012) reported that visibility of

the growth rings is unclear in H. fomes. Chowdhury et al.

(2008) also showed the presence of distinct growth ring in

this species without parenchyma band using stereomicro-

scopic images. The discrepancies among the studies might

be due to methodological difference in observations.

However, the tree-ring periodicity tested in this study

supports the results of Chowdhury et al. (2008) where the

periodicity has been shown using synchronization of

growth rings with annual precipitation. Another species of

this genus, H. litoralis Aiton forms a ring boundary also

with 2–4 cell layers of marginal parenchyma (Robert et al.

2011). Newly formed resorted wood was not found and the

ring boundary also began instantly after the cambial

marking (Fig. 4a). It can therefore be assumed that wood

formation is ceased immediately before the cambial

wounding. Of the 13 marked trees, 38 % trees developed a

complete concentric growth ring (category I) after the

cambial marking (Table 1). Our results suggest that growth

ring anomalies are related to the reduced radial growth in

the respected area of stem circumference (Fig. 3). In most

of our samples, radial growth in the lower part of stems

(opposite side of the tension wood) was minimum

(\0.75 mm) and therefore the ring merged with the pre-

vious one forming wedging or partially missing ring.

Similar conclusion was reached for R. mucronata from

Kenya where trees also form annual rings where growth

rate is greater than 0.5 mm year-1 (Verheyden et al. 2004).

In addition, locally absent ring might be related to pith

eccentricity of the stem. This phenomenon commonly

occurs in the other tropical species (Sass-Klaassen et al.

2008; Trouet et al. 2012; Pumijumnong 2013). The col-

lected samples were smaller in diameter (3.2–5.8 cm) and

the occurrence of higher pith eccentricity encountered is

due to asymmetrical growth stress during stem develop-

ment (e.g., Fournier et al. 1994). In a highly dynamic

mangrove environment, such kind of growth stress might

be caused by frequent change of stem orientation due to

inundation, sedimentation, erosion and seasonal storm

events (e.g., Ellison et al. 2000; Robert et al. 2011).

The salinity variation between site 1 and 2 was not

significant but varied significantly from site 3. The average

growth rate was much lower in the higher salinity site (site

3) compared to other two sites (Table 1). The photosyn-

thesis rate of H. fomes decreases with increase of salinity

(Nandy et al. 2007), which might explain lower growth rate

in the higher saline area. The average radial growth of this

species is within the range of the earlier study (Chowdhury

et al. 2008). Moreover, the slow growth of this species is

similar to other mangrove species (Verheyden et al. 2004;

Schmitz et al. 2007; Robert et al. 2011).

Cambial dormancy and growth ring formation

During cambial activity, the cambial derivatives alter

gradually both morphologically and physiologically toward

definite features (Larson 1994). Once their final stage has

been reached, the cell walls complete their lignifications

(e.g., Dié et al. 2012) and therefore in dormant cambial the

boundary between xylem and cambial zone is abrupt

(Fig. 5). The thicker radial walls of the cambial cells

(Fig. 5) might relate to an increase of apoplastic translo-

cation during dormancy through the cambial zone when

storage materials accumulate in xylem and phloem par-

enchyma cells (Catesson 1990). There was no dividing or

enlarging cell and the cambial zone comprised of four to

seven cells in the three studied sites (Fig. 5). These are the

typical morphological characteristics of cambial during the

dormant season in the tropical species (Larson 1994; Priya

and Bhat 1999; Venugopal and Liangkuwang 2007; Dié

et al. 2012; Pumijumnong and Buajan 2013).

Heritiera fomes is an evergreen tree and sheds mature

leaves immediately after emerging of young leaves in May

to June (A. Rahman, Forest officer, Sundarbans; personal

communication). From December to April, the precipita-

tion is very low (nearly of 35 mm) which increases from

May to September and again decreases from October

(Fig. 2). The average winter (December–February) tem-

perature (20 �C) increases around 29 �C in March to April

while the maximum temperature is around 30 �C in rest of

the year (Fig. 2). However, from December to April, the

up-stream river flow decreases more than 75 % (Mirza

1998) while the water salinity increases around 80–90 %

(Islam and Gnauck 2011). Thereafter a bigger drop in

salinity occurs from late May due to monsoonal precipi-

tation (Fig. 2) and increase of up-stream river flows with

the network of streams and rivers criss-crossing the forest

(Mirza 1998; Wahid et al. 2007; Islam and Gnauck 2011).

There was no new restored wood and the growth ring

boundary began immediately after the cambial marking

(Fig. 4) which suggests the presence of dormant cambium

in the samples (cambial marked in January). In addition,

cambial activity analysis showed inactive cambium in the
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samples harvested in March to April (Fig. 5). It is thus

assumed that cambial dormancy occurs in H. fomes from

January to April in the Sundarbans. Conversely, in a sim-

ilar monsoonal climate (Thailand), the cambial activity is

not driven by climate in Avicennia spp. and Rhizophora

spp. (Buajan and Pumijumnong 2012). It is noted that a dry

season (\60 mm of monthly rainfall) lasting more than

3 months is sufficient to invoke a cambial dormancy to

trigger the ring formation in tropical species (Worbes 1995,

1999; Trouet et al. 2012). In addition to a dry (low pre-

cipitation) period (January to April), increase of salinity

creates physiological dryness in the Sundarbans (Parida

and Das 2005) that might invoke dormancy in trees. On the

other hand, decrease of salinity might induce cambial

activity which is reflected by the leaf flushing (May–June).

It is generally assumed that the cambial activity in tropical

trees is induced by some time before leaf flushing

(Borchert 1999). Tree produces a considerable amount of

wood with a different anatomy through active cambium to

form a distinct growth ring (Robert et al. 2011).

Conclusion and perspectives

The data presented here, using cambial marking experi-

ment, as well as cambium activity analysis offer strong

evidence for the presence of annual growth rings in H.

fomes and showing their potential for analysis of tree age,

carbon sequestration and reconstructions of forest growth

dynamics and climate. Using stem discs will facilitate the

visual detection of ring boundaries, allow for the identifi-

cation of wedging and partially missing rings which are

common in this species, as described in many other tropical

species (Worbes 2002; Brienen and Zuidema 2005; Mbow

et al. 2013; De Ridder et al. 2013b; Gebrekirstos et al.

2014). Due to these difficulties, using increment cores for

this species may lead to errors even though this is con-

siderably a nondestructive method (Rohner et al. 2013). H.

fomes is still the most important species of the Sundarbans

and covering over 67 % of the vegetated area (Iftekhar and

Saenger 2008). Due to increase of anthropogenic distur-

bances (IUCN 2003) and reducing the allowable harvesting

diameter in the successive management plans (Siddiqi

2001) might have decreased the large diameter trees in the

Sundarbans. However, a recent forest inventory of the area

using 68 PSPs (13.6 ha) shows that still there are trees

approximately 50 cm diameter (around 200 years of life-

span) that might offer the opportunity to construct long

chronologies.
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